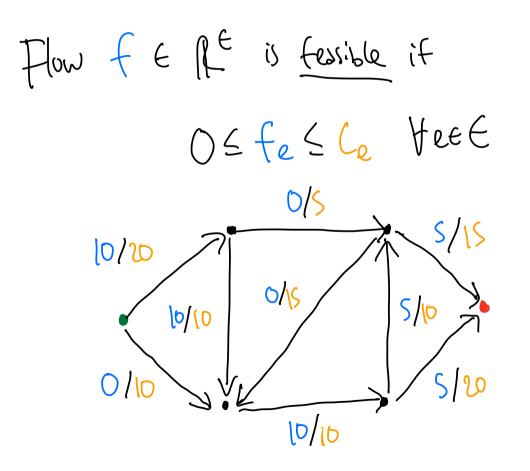


At Search (Part V, Section S.2)

(ded: Modify edge weights using h: V >) (f (heuristic/ price function)


Assign shorter paths to votices close to t W/O Changing the shortest paths!

Define
$$G^{h} = (V_{1}E_{1}W^{h})$$

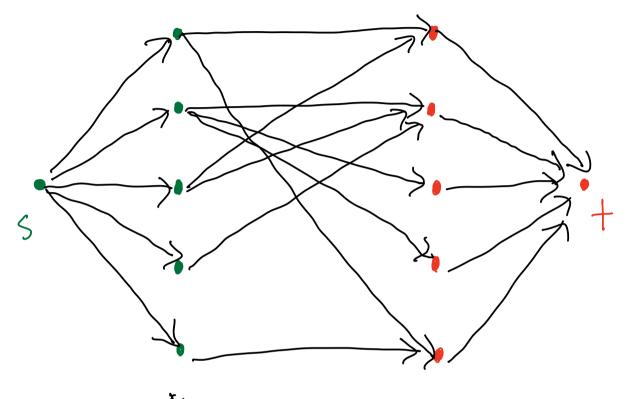
 $W^{h}_{(u,v)} = W_{(u,v)} - h(u) + h(v)$
surings when cost of
leaving u extering U
(Joinn': fix VEV. All S-V paths P have
 $\sum_{we} W^{h} = \sum_{we} W_{e} - h(s) + h(v)$
eff
new weight old weight (hanse: no dependence on P
Phoof: let P be $(v_{1}=s, v_{2})_{1}(v_{2}, v_{3})_{1}...(v_{n}, v_{e}=v)$
Total edge weight:
 $\sum_{e\in P} W^{h} = \sum_{we} - h(s) + h(v_{2})$
 $= E^{h} W^{h} = \sum_{e\in P} W^{e} - h(s) + h(v_{2})$
 $= E^{h} W^{h} = \sum_{e\in P} W^{e} - h(s) + h(v_{2})$
 $= E^{h} W^{h} + h(v_{2})$

• Shortect path distances Change
by
$$h(v) - h(s)$$

What is a good h ?
1) Smaller for vertices near t
2) all edge weights in G^{h} howness: "Consistent"
(quasi-)
(quasi-)
(quasi-)
(quasi-)
(quasi-)
(quasi-)
(quasi-)
(quasi-)
(quasi-)
(unit)
 $f(v) = m(v_{1}t)$
 $f(v_{1}v)$
 $f(v)$
 $f(v)$


Takeoways: · Shortest paths unchanged

Hows (Part V, Section 4.1) One of most powerful reduction tools "how much stuff can be sent in G?"



Net flow Q VEV:

$$\partial f(v) = \sum_{(v_1v_1) \in E} f_{(v_1v_1)} - \sum_{(v_1v_1) \in E} f_{(v_1v_1) \in E} (v_1v_1) \in E} (v_1v_1) \in E$$

produced by V (onsumed by V)
Simple Observation:
 $\sum_{v \in V} \partial f(v) = \sum_{v \in V} f_{(v_1v_1)} = O$
 $v \in V$ ($v_1v_1 \in E$
 $\sum_{v \in V} f_{(v_1v_1)} = O$
We call f an s-t flow if:
 $\partial f(s) = -\partial f(t)$
 $\partial f(v) = O$ $\forall v \notin \{s_1, t\}$

Reduce to flow .

All edges Capacity=1

(Idim: S-f Maxflow value = Max matching size
(=)) Given matching, Can extend to How of some value
(=) Given flow, where is each (S, N) going?
(=) Extend path to f, creates one matched pair